

C11G MULTIFUNTCION CNC BOARD Rev. 8.7

DECEMBER 2014

USER'S MANUAL

TABLE OF CONTENTS

Page

Contents

1.0	OVERVIEW1
2.0	FEATURES1
3.0	SPECIFICATIONS
4.0	BOARD DESCRIPTION4
5.0	SPECIAL FUNCTIONS
5.1	Safety charge pump "SCHP" (PIN 17)5
5.2	Variable speed control (pin 14)6
5.3	Electromechanical relays (pins 1 and 16)9
5.4	Using the COM configuration jumper10
5.5	External enable pin10
6.0	FUNTIONAL BLOCK DIAGRAMS11
6.1	Outputs 2-9 simplified functional block diagram11
6.2	Outputs 1, 14, 16 and 17 simplified functional block diagram11
6.3	Input simplified functional block diagram12
7.0	WIRING DIAGRAMS13
7.1	Connecting switches or push button13
7.2	Connecting NPN sensors13
7.3	Connecting PNP sensors16
7.4	Other connection17
8.0	TROUBLESHOOTING18
9.0	DIMENSION

1.0 OVERVIEW

This card has been designed to provide a flexible interface and functions to your computer projects, by using the parallel port control software. This board comes as a response to many customers that have been asking for a faster way to connect devices and reduce the possibility of wiring errors.

2.0 FEATURES

• IEEE 1284 Standard compatible

Includes the circuitry recommended by the IEEE 1284 Level 1 standards for bidirectional parallel communications between personal computers and peripherals.

• PULL-UP or PULL-DOWN selection for inputs

Includes jumpers to select the best input configuration for your application

• **Buffered inputs and outputs.** Outputs are buffered through the use of high speed and high current buffers allowing the card to output the signals without using the power from the parallel port. It can take the +3.3 or +5vdc signal from the parallel port and deliver solid +5vdc at 24 milliamps.

• Microcontroller based SCHP.

This board comes with a microcontroller that allows the implementation of a complex algorithm for sampling and analyzing the SCHP signal.

• Built-in Variable Speed Control.

It has an optoisolated analog 0- 10VDC output that will convert a PWM signal into an analog signal that can be used to command a commercial VFD. This analog can be adjusted using an on-board potentiometer, so this board can be adjusted to other voltages.

• 3 Electromechanical Relays with NO and NC positions.

Mechanical relays are very flexible because they can be used for AC or DC and come with NO and NC (Normally Open and Normally Closed) positions.

• Status LEDs on all inputs and output connections.

No more guessing. You can SEE all your signals. Save valuable time and brainpower for CNCing. To avoid remaining current to the main load (driver or other device), all the indicator LEDs are driven by independent buffers of the ones that drive de output.

• Output pins 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 16 and 17.

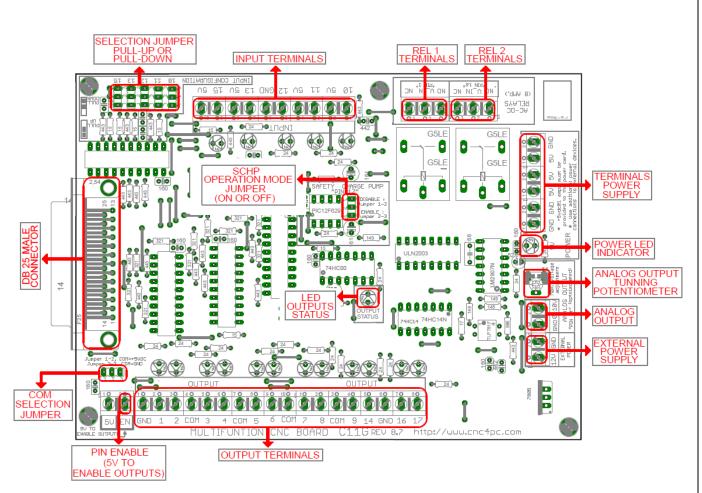
- Input pins 10, 11, 12, 13 and 15.
- Input and output pins close to ground or +5vdc connections
- Common terminal for pins 2-9 can be ground or +5vdc. Forget about grounding problems. Easily connect your pin by using your close by ground connection. No need to be an electronics expert to ground all your stuff. The board has a jumper that allows you to select if the common terminal to pins 2-9 will carry a ground or +5vdc. So if you are connecting encoders or proximity switches, you can select it to ground. If you are connecting Gecko drives or limit switches, you can set It to be +5VDC.
- External Enable Pin (EN). The board has a pin that allows you to enable/disable all the outputs at once. The board requires +5vdc in the EN pin. If it is not present, it will send all the outputs to ground. You can use this to enable or disable the system manually, or you can install an external Safety Charge Pump or other external safety monitoring device.
- Works directly with popular CNC hardware and software. Such as Gecko drive or Leadshine, and parallel port control software, such as mach2, Linux EMC, Turbo CNC, and others. (Not all tested).
- All TTL 5VDC signals. Interface directly with parallel port interface products and other CNC4PC cards. 5VDC (TTL) cards are very common among automation devices.
- Screw-On connections for all terminals. You only have to screw-on the wires to make all your connections.
- All pins can be used in a concurrent manner. You can use all the input or output pins in a concurrent manner. For example, if you are using output pin #1 to control the Built-in Electromechanical Relay, you can also access that signal from the output pin on the board or from the DB25 connector for output. Each connection will not affect the other current from the other connection.

3.0 SPECIFICATIONS

DIGITAL INPUT SPECIFIC	DIGITAL INPUT SPECIFICATIONS					
On-state voltage range	2 to 5V DC					
Maximum off-state voltaje	0.8V					
Maximum operation frequency	4 MHz					
Typical signal delay	10nS					

DIGITAL OUTPUT SPECIFICATIONS					
Maximum output voltage	(5V power supply voltage) + 0.5V				
Typical output current	24mA				
Maximum off-state voltaje	0.44 V				
Maximum operation frequency	4 MHz				
Typical signal delay	10 nS				
Time of transition to high impedance state	12 nS*				

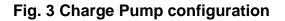
*Time passed since a low in the ENABLE input is detected and the outputs are disabled


Requirements:

It requires a 5VDC @ 1000 milliamps power supply to operate.

Check the polarity and voltage of the external power source and connect the 5V and GND. Overvoltage or reverse-polarity power applied to these terminals can cause damage to the board, and/or the power source.

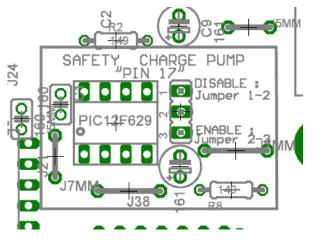
4.0 BOARD DESCRIPTION


5.0 SPECIAL FUNCTIONS

5.1 Safety charge pump "SCHP" (PIN 17)

This board takes advantage of Mach ability to send a specific frequency through one of the pins of the parallel port when the program is in control of the system. CNC machinery can be very dangerous, and you could have a risk of the machine doing something different that what you intend the machine to do if the program loses control of your system. Mach be can be programmed in a way, so when it is "in control", it delivers a 12.5 KHz signal through one of the pins. This card lets you use this signal to work as an On/Off switch for your system, enabling a powerful safety system for your equipment. If you ever had windows crash on you, then this card is for you. The port can also do weird things while the system is coming up, or down.

For Configuring the Charge Pump in Mach X: Use the dialog Config / Ports and pins / Output Signals. Enable the Charge Pump output and configures it as is shown in the Fig. 8 Next, press the apply button.


Signal	Enabled	Port #	Pin Number	Active Low	
Output #2	X	0	17	X	
Output #3	×	0	0	2	
Output #4	X	0	0	X	
Output #5	X	0	0	2	
Output #6	¥		-	-	
Charge Pump	4	1	17	X	
Charge Pump2		0	0		
Current Hi/Low	X	0	0	X	
Output #7	X	0	0	X	
Output #8	X	0	0	X	
Output #9	*	0	0	2	~
	us 2 - 9 , 1 , 14 , 16 , ar	(1-2	2 20 ¹ 22 22	1.5	all and a second

Selecting the SCHP operation mode

The Safety Charge Pump can be activated or deactivated depending on the jumper position

1-2: SCHP OFF 2-3: SCHP ON

Note: When the Safety Charge Pump is activated, the EN terminal is active and a valid SCHP signal is present, pin 17 will go high. This high signal can be used to enable other external devices, such as enabling other Breakout Boards, or relays that would enable servos, VFDs, contactors etc....

5.2 Variable speed control (pin 14)

This function lets you control your spindle with step and direction signals, as if it was an axis motor. It converts the step signal into an analog (0-10VDC).

A Variable Frequency Drive or Inverter works by modifying the frequency for AC motors. Most of these devices with an external analog signal (0-10VDC). That is, if there is 5VDC coming into through the control signal, the motor will run at 50% of full speed, if there was 10VDC, the motor will run at 100% of full speed. If there is no signal coming out, then the motor will stop.

This function can also be used on many DC motor controllers by replacing the potentiometer that controls the speed.

Requirements:

It requires a +12VDC@ 20mA power supply to operate.

WARNING: To keep the output signals optoisolated, these must not have common ground or connections to current with other circuits you are using. You will require a voltmeter to fine tune your system

Wiring:

Before connecting anything, please be sure to read your VFD's manual and make sure you understand all the safety issues.

Please check the wiring guide and wiring samples here: <u>http://cnc4pc.com/Tech_Docs/C6R5_WG.pdf</u> and <u>http://cnc4pc.com/Tech_Docs/C6R5_WS.pdf</u>

Configuring the Control Software:

It is strongly recommend you read your control software's manual. You need to configure your control software to control the spindle as if it was an angular axis. This card requires a 25 KHz input signal in the pin 14 to deliver 10VDC. So you have to set the speed of the motor (spindle) at maximum. For acceleration values adjust them to where you feel comfortable. Keep in mind the acceleration of the motor must also be set in your VFD.

For configuring Mach follow these steps:

1. Go to Config / Ports&Pins / Motor Outputs. Enable the spindle and select the port and pins you wired for step and direction.

	-	Step Pin#	Dir Pin#		Step Low A	Step Port	Dir Port
X Axis	4	2	3	×	×	1	1
Y Axis	4	4	5	×	×	1	1
Z Axis	4	6	7	×	×	1	1
A Axis	4	8	9	×	×	1	1
B Axis	×	17	1	×	×	1	1
C Axis	×	14	16	×	×	1	1
spindle	4	14	16	X	×	1	1

Fig. 4 Ports&Pins configuration screenshot

2. Go to Config / Ports&Pins / Spindle Setup. In the motor control box, check Use Spindle Motor Output and Step /Dir Motor. Under Pulley Ratios set the pulley ratios of the machine.

ort Setup and Axis Selection Motor Out	puts Input Signals Output Signal	Encoder/MPG's	Spindle Setup	MII Options	
Relay Control		Pulley Ratios Current Pulley Set Pulley Ratio #1 Pulley Ratio #2 Pulley Ratio #3 Pulley Ratio #4	Min Speed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Max Speed 420 840 1680 3760	RPM
Met M7 Output # 1 Rood M8 Output # 1 Output Signal #s 1-5 ModBus Spindle - Use Step/Dir as well F Enabled Reg 64 64 - 127 Max ADC Count 16380	General Parameters CW Delay Spin UP CCW Delay Spin UP CW Delay Spind DOWN CCW Delay Spin DOWN CCW Delay Spin DOWN	Seconds Seconds Seconds Seconds	cial Functions Laser Mode, fre Use Spindle Fer Dosed Loop Sp 0 0.25 1 5 Spindle Speed /	edback in Sync indle Control 1 D 0.3	Modes

Fig. 5 Spindle Setup screenshot

3. Go to Config / Motor Tuning / Spindle. On Steps per unit put 1,000, set velocity to Maximum. For Acceleration, choose the acceleration that you feel comfortable with. Start slow, increase acceleration as you test your system. Under Step Pulse length, use a number from 3 to 5, but start with 3. This number is directly proportional to the final voltage you will get in the analog output. Use this number and the fine tuning pot to adjust the voltage you want to get at max speed.

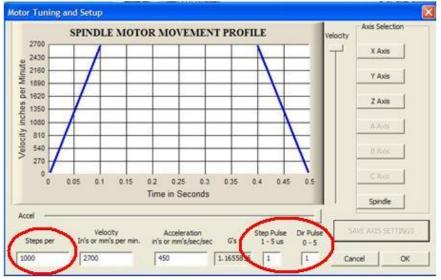
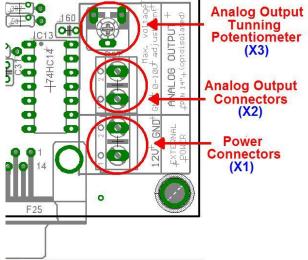


Fig. 6 Motor Tuning and Setup screenshot

After configuring the Mach, these steps should be followed.


Step 1 Ensure that all external power sources are set to OFF.

Step 2 Connect the power supply to the Power Inputs Connectors (X1).

Step 3 Turn on the external supplies

Step 4 Connect a voltmeter in the analog outputs connectors (X2) and make and fine tune this output:

Make sure that when you reach the max speed in the control software you get 10VDC out (X2). This voltage can vary depending on many things, including the electrical properties of parallel port or breakout board you are using, the length of the step pulse your software is delivering, and the normal hi or low status of your step pin. Play with the pot, hi/low status of the pin, and pulse length to fine tune the output voltage.

5.3 Electromechanical relays (pins 1 and 16)

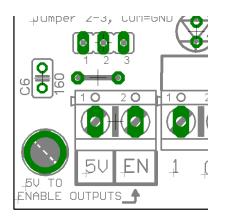
Mechanical relays are very flexible because they can be used for AC or DC and come with NO and NC (Normally Open and Normally Closed) positions. Relays are independents, one reacts to Pin 1 and the other one to Pin16 and that both can be used at the same time. The relay specification are showed in the below table.

ELECTROMECHANICAL RELAYS SPECIFICACTIONS					
Maximun Current (AC)	7A@240VAC; 10A@125VAC				
Maximun Current (DC)	15A@524VDC; 10A@28VDC				


 Table 2 Electromechanical Relays Specifications

5.4 Using the COM configuration jumper

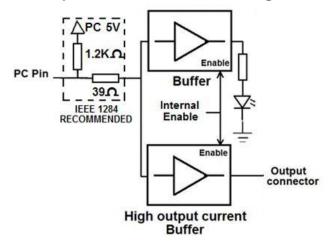
This is for selecting the value to get at the COM terminals found next to step and direction terminals (Pin 2-9). Some drivers expect a ground, and others expect +5vdc. There is a jumper (X7) that allows you to select +5VDC or GND for the COM pins.


1-2: COM= 5V

2-3: COM= GND

5.5 External enable pin

The card must be provided with a 5VDC signal to enable operation. This feature has been added to externally control the status of the outputs. An external switch or a Safety Charge Pump can be added to provide the enabling signal. When the enable signal is not present, output signals sent high impedance state. If this function is not required, an jumper can be placed between +5vdc and the EN terminal. It has an internal 4.7kOhm pull-down resistor.



WARNING: This card must have the power supplied while it is connected to the PC. If power is removed to the card while it is connected to the PC, noise can be

introduced to the output lines. This can create a dangerous situation as relays or other devices that might be connected to this card could get activated.

6.0 FUNTIONAL BLOCK DIAGRAMS

6.1 Outputs 2-9 simplified functional block diagram

Fig. 1 Simplified functional block diagram for the outputs 2-9

Parallel Port coupling is done following IEEE 1284 standard recommendation. The indicator led is driven by a different buffer.

6.2 Outputs 1, 14, 16 and 17 simplified functional block diagram

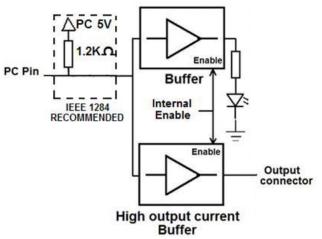
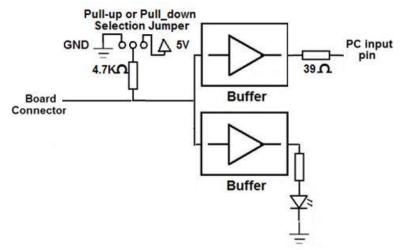



Fig. 2 Simplified functional block diagram for the outputs 1, 14, 16 and 17.

Note: "Internal Enable" = "External Enable Pin" AND ("SCHP" OR "Bypassed SCHP")

The "Internal Enable" is the result of an AND Operation between the "External Enable Pin" and the SCHP operation mode selected by the user.

Note: The output will be deactivated if the board is not connected to the PC parallel port.

6.3 Input simplified functional block diagram

Fig. 3 Simplified functional block diagram for the inputs.

Pins 10, 11, 12, 13 and 15 can be set to pull-down or pull-up by selecting the jumper in the appropriate position.

The input pins can be set to be pulled up or down with a 4.7Kohm resistor

7.0 WIRING DIAGRAMS

While this board supports only TTL +5VDC signals, different kind of sensors, switches using different voltages can be connected using the diagrams that follow:

Note: The below wiring diagrams are an example, any input can be used for the connections.

Note. The bellow wiring diagrams require setting the inputs to use pull-down resistor.

7.1 Connecting switches or push button

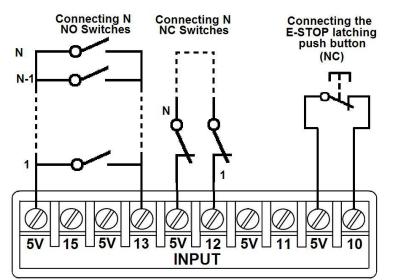


Fig. 7 Wiring diagram to connect switches

7.2 Connecting NPN sensors

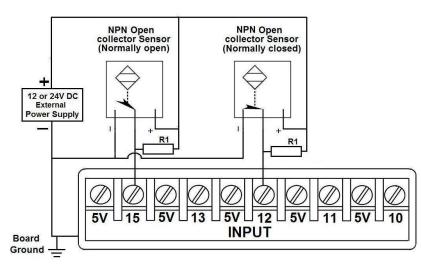


Fig. 8 Wiring diagram to connect NPN open collector proximity sensors

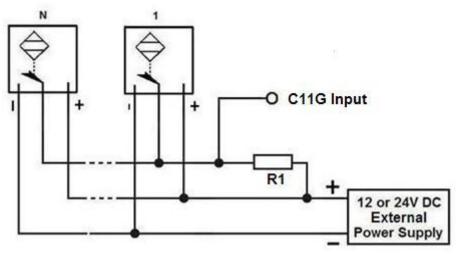
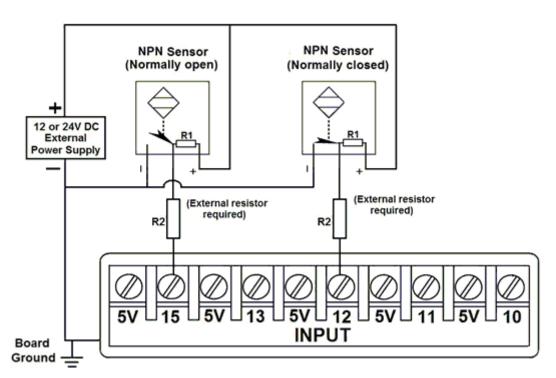
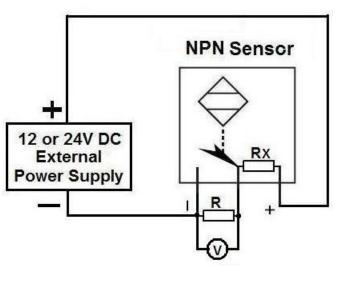



Fig. 9 Wiring diagram to connect in parallel NPN open collector proximity sensors

Connecting NPN open collector proximity sensor with the C11G					
R1 Value (12V)	R1 Value (24V)				
Aprox. 10KΩ	Aprox. 25KΩ				


Fig. 10 Wiring diagram to connect NPN proximity sensors with internal pull up resistor

Some NPN proximity sensor has a pull-up resistor (R1) internally. It is necessary to know its value in order to connect safely the sensor with the BOB. Follow this recommendation:

Connecting NPN open collector proximity sensor with the C11G					
(R1+R2) Value (12V)	(R1+R2) Value (24V)				
Aprox. 10KΩ	Aprox. 25KΩ				

Calculating the R1 value

Note: Rx is the unknown resistor value

 $R_x = V_{EX}.(R/V) - R$ (1)

Where:

V_{EX} is the external power supply voltage V is the voltage across the R resistor

An external resistor and a voltmeter are required to calculate the internal resistor (Rx) value.

Note. The user should know the R value to do this operation. A 4.7KOhm @ 1/2W is recommended.

SAMPLE: if you are using a 12V power supply (V_{EX}), and using a 4.7KOhm as external resistor (R), then the voltage across R should be 6V, using the equation 1, the Rx value is 4.7KOhm.

7.3 Connecting PNP sensors

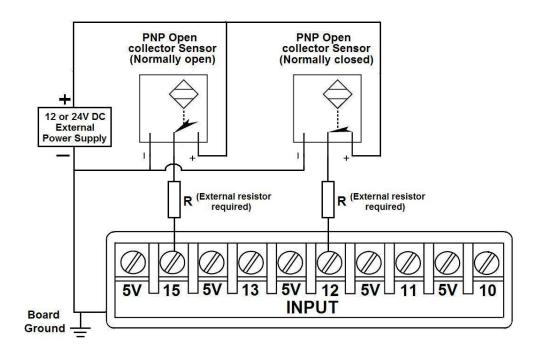


Fig. 11 Wiring diagram to connect PNP proximity sensors

Connecting PNP proximity sensor with the C11G					
R Value (12V)	R Value (24V)				
Aprox. 10KΩ	Aprox. 25KΩ				

7.4 Other connection

Other connections can be implemented by setting the inputs to pull-up resistor.

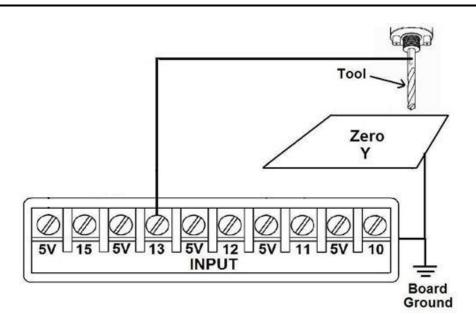


Fig. 12 Wiring diagram to do an "Auto Tool Zero" http://cnc4pc.com/Tech_Docs/E_STOP_N_EN_Wiring.pdf

http://cnc4pc.com/Tech_Docs/E_STOP_N_SCHP.pdf

8.0 TROUBLESHOOTING

SYMPTOM 1: THE BOARD DOES NOT RELAY THE SIGNAL.

POSSIBLE CAUSE	POSSIBLE SOLUTIONS
 Pin conflict or mach3 configuration. It is possible that the port address used for the pin is not right, or that there is a pin conflict with the. That is that you are using that same pin twice. (it could be assigned to a different function). 	 Go to the device manager in windows, and check the memory address used for the parallel port you are using. Usually it will be 378 for LPT1. Check also that the port does not have a conflict. Then in mach3, go to Ports & Pins / Port Setup and Axis Selection. Check the memory address is correct. Check that the pin you are using is not been used anywhere else in your setup. Got to motor output and output signals, and check all the entries.
- The board does not like the	 Play with the active low status of the pin
waveform it is getting. Some	used for the frequency.
breakout boards could invert the signals or modify the pulse width.	

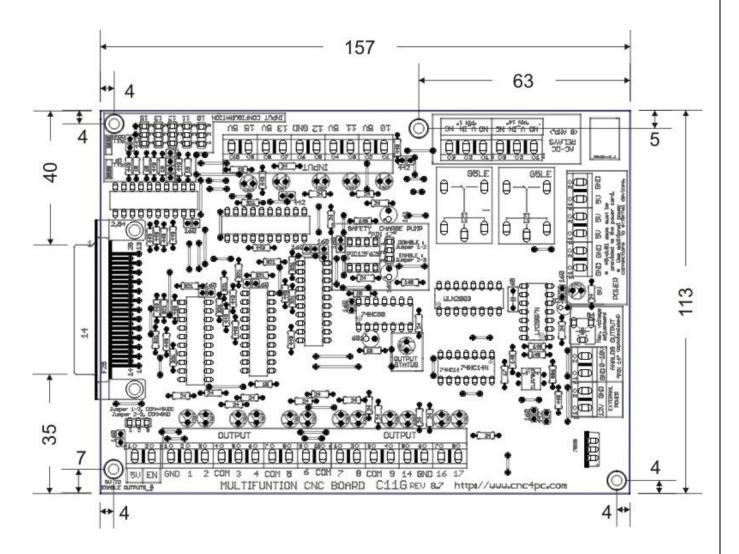
 Changing the active low status of the pin used also inverts the waveform. The signal or frequencies are not getting to the board. It could be the cable or that you are passing the signal through the same breakout board that you are enabling/disabling, so the outputs could be disabled, so they will not get to the breakout board. 	 Try a different cable. Test the pins in the cable (before they reach the breakout board) with a multimeter.
- Problems with Mach3 Pulse Generation. Mach3 could have installation problems (you did not restart immediately after installation), or there could be something creating a conflict. Some dongle devices might cause this, other software, like QuickTime or drivers for touch screen.	 Test this in a different PC. Follow Art's suggestions for optimizing up WinXP: <u>http://www.machsupport.com/downloads/ XP_Optimization.txt</u>.

SYMPTOM 2: THE OUTPUTS DO NOT GET ENABLED / NO SIGNALS ARE COMING OUT.

POSSIBLE CAUSE	POSSIBLE SOLUTIONS
- The EN terminal (Enable Outputs) is not enabled. The board requires to be externally enabled.	 Make sure you are providing +5vdc to the EN terminal. This +5vdc can be taken from the terminal next to it.
- The Safety Charge Pump is not configured. The Safety Charge Pump can either be configured in the control software or disabled by moving the jumper to the disable position.	 Start by disabling the SCHP. Enable it and configure it once your system is setup.
- The parallel cable is not well connected to the PC parallel port.	 Check if the parallel port is well connected to the PC.

SYMPTOM 3: THERE IS NOISE IN THE SYSTEM, OR THE MOTORS DO NOT MOVE SMOOTHLY.

POSSIBLE CAUSE	POSSIBLE SOLUTIONS
- The board could be underpowered.	 Make sure you are using a +5vdc 400mA power supply.
- There could be a short that could be draining the power to the board.	- Check that there are no hot spots in the board or it's connections.
	 Measure the board's power consumption, it should be less than 400mA (depending on the features used).
	- Blown chips could create an internal short and end up drawing power that can affect how other chips work.
 There could be an external noise source that could be introducing noise into the system. 	 Try using shielded cables. Try to isolate VFDs or AC servos, etc. Try using 103. 0.1mF caps between the I/O terminal and a ground of the board.


SYMPTOM 4: A I/O PIN MIGHT NOT BE WORKING.

POSSIBLE CAUSE	POSSIBLE SOLUTIONS
 A chip may have gone bad. These buffers could act as fuses for the signals, and they can go bad because of noise spikes or even strong static. 	 These chips are inexpensive and readily available. You can order them here: http://www.cnc4pc.com/Store/osc/index.ph P?cPath=38_43 Carefully moving chips around and checking if the problem moves around could be a way of figuring out if this is the case.
- There could be a problem with the parallel cable or parallel port.	- Test this with a different PC or parallel port.

SYMPTOM 5: THE ANALOG OUTPUT DOES NOT REACH THE 10VDC.

POSSIBLE CAUSE	POSSIBLE SOLUTIONS
 Insufficient pulse width. It is possible that the signal pulse width is not enough to activate the optocouplers. 	 In Mach X, go to Config / Motor Tuning / Spindle. Under Step Pulse length increase this value, use a number from 3 to 5, but start with 3.
- The signal is set active low or the breakout board could be inverting the signals.	 In Mach X, go to Config / Ports&Pins / Motor Outputs. Change the active low status of the pin used for step.

9.0 **DIMENSION**

All dimensions are in Millimeters.

DISCLAIMER

Use caution. CNC machines can be dangerous machines. Neither DUNCAN USA, LLC nor Arturo Duncan are liable for any accidents resulting from the improper use of these devices. This board is not a fail-safe device and it should not be used in life support systems or in other devices where its failure or possible erratic operation could cause property damage, bodily injury or loss of life.